
 H2020 – EE – 11 – 2015

Research and Innovation Action

CleAnweb Gamified Energy Disaggregation

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 696170

D3.3 System Components (Short)

Report Identifier: D3.3

Work-package, Task: WP3 Status – Version: 2.5

Distribution Security: CO Deliverable Type: DEM

Editor: WATTICS

Contributors: ALL

Reviewers: ED, PLEGMA

Quality Reviewer: ED

Keywords: Demonstrator, prototype, development, interfaces

Project website: http://www.charged-project.eu/

http://www.charged-project.eu/

D3.3 System Components

Page 2 of 47

Disclaimer

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the

ChArGED Consortium nor any of its members, their officers, employees or agents accept shall be liable or responsible,

in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use,

in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy,

omission or error therein contained.

The European Commission shall not in any way be liable or responsible for the use of any such knowledge,

information or data, or of the consequences thereof.

This document does not represent the opinion of the European Union and the European Union is not responsible for

any use that might be made of it.

Copyright notice

© Copyright 2016-2019 by the ChArGED Consortium

This document contains information that is protected by copyright. All Rights Reserved. No part of this work

covered by copyright hereon may be reproduced or used in any form or by any means without the permission

of the copyright holders.

D3.3 System Components

Page 3 of 47

Table of Contents

Abbreviations 7

Executive Summary 9

1 Introduction 10

1.1 Purpose and Scope 10

1.2 Intended Audience 10

1.4 Document Overview 10

2 ChArGED System Architecture 11

2.1 Logical Architecture 11

2.2 Process View 12

3 Data/Core Back-End System 13

3.1 SiteWhere Software Environment 13

3.1.1 Description and Operation 13

3.1.2 Implementation 14

3.1.2.1 Architecture 14

3.1.2.3 Installation and Configuration Steps 15

3.2 Databases (InfluxDB, MongoDB) 15

3.2.1 Description and Operation 15

3.2.2 Implementation 15

3.2.2.1 Architecture 15

3.3 User Management (WSO2 Identity Server) 15

3.3.1 Description and Operation 15

3.3.2 Implementation 16

3.3.2.1 Architecture 16

3.3.2.3 Installation and Configuration Steps 17

3.4 Asset management/User Interface 17

3.4.1 Description and Operation 17

3.4.2 Implementation 18

3.4.2.1 Architecture 18

3.4.2.2 Implementation Status 18

3.5 Raw Data Visualization (Grafana) 21

3.5.1 Description and Operation 21

3.5.2 Implementation 22

D3.3 System Components

Page 4 of 47

4 Sensor Gateway 22

4.1 Sensor Gateway System Architecture 22

4.2 HDM/SiteWhere Integration 24

4.2.1 Description and Operation 24

4.2.2 Implementation 24

4.2.2.1 Architecture 24

4.3 Modbus Device Integration to SiteWhere 25

4.3.1 Description and Operation 25

4.3.2 Implementation 25

4.3.2.1 Architecture 25

5 Analytics Backend 26

5.1 Wattics Back-End Architecture 26

5.2 Component for Automated Disaggregation and Allocation of Energy Savings 27

5.2.1 Description and Operation 27

5.3 Component for Automated Discovery of Energy Saving Opportunities 31

5.3.1 Description and Operation 31

5.3.2 Implementation 32

5.3.2.1 Architecture 32

5.4 Energy manager Front-End Dashboard 33

5.4.1 Description and Operation 33

5.5 Component for Microgeneration Energy Forecasting 34

5.5.1 Description and Operation 34

5.5.2 Implementation 34

6 Mobile App 38

1.1 Front-End 38

6.1.1 Description and Operation 38

6.2 Game Backend / Game Mechanics 43

6.2.1 Description and Operation 43

6.2.2 Implementation 44

6.2.2.1 Architecture 44

8 Conclusions 47

D3.3 System Components

Page 5 of 47

List of Figures

Figure 1: The ChArGED System Architecture .. 11

Figure 2: Organisation of SiteWhere system components ... 14

Figure 3: SiteWhere’s time series and noSQL databases .. 15

Figure 4: SiteWhere’s identity management through WSO2 Identity Server ... 16

Figure 5: The SiteWhere assets, device and metadata organisation .. 18

Figure 6: Illustration of the SiteWhere tenants created for each pilot site .. 19

Figure 7: Illustration of how the different pilots are decomposed into sub-sites within SiteWhere 20

Figure 8: Illustration of the assignment of devices to assets in SiteWhere for the pilot sites...................................... 21

Figure 9: Example of data collected by ZWave plugs in the DAEM pilot site .. 22

Figure 10: The Raspberry Pi (version 3 Model B used as hardware platform for the Sensor Gateway software 23

Figure 11: Illustration of the sensor gateway data collection, processing and communication to SiteWhere 24

Figure 12: Integration of the Sensor Gateway’s HDM with SiteWhere via MQTT .. 25

Figure 13: Modifications to the Sensor gateway for integration of Modbus meters ... 26

Figure 14: The Wattics cloud backend system architecture ... 26

Figure 15: Illustration of power drop measurement on a single electrical reading with NFC swipe events from users

providing the name of the appliance causing the drop .. 28

Figure 16: Illustration that no kWh savings are achieved by a specific user control action, when that action was already

conducted before ChArGED was introduced. ... 29

Figure 17: Illustration of the kWh savings achieved by a specific user control action ... 29

Figure 18: Illustration of the kWh savings achieved by a specific user control action delimited by a BLE alert 30

Figure 19: Illustration of the kWh savings calculation triggered at the start of the day covering the period from the

NFC swipe event to when the user is expected to be returned at his desk .. 30

Figure 20: Illustration of the kWh savings calculation triggered at the start of the day covering the period from the

first NFC swipe event to when the users are expected to be returned at his desk .. 31

Figure 21: Illustration of the kWh savings calculation delimited by BLE alerts when a user leaves and returns to a

location .. 31

Figure 22: Model creation showing historical measurements (blue dots) and the model (green area) 33

file:///C:/Users/garbi/Dropbox/DropboxDocuments/EuroDyn/Projects/ChArGED/Deliverables/D3.3%20System%20components/FINAL/TO_SUBMIT/ChArGED-D3.3_VShort.docx%23_Toc509326117

D3.3 System Components

Page 6 of 47

Figure 23: Overview of theoretical principles of photovoltaic power production ... 35

Figure 24: PLEGMA’s Solar microgeneration forecast configuration screen .. 36

Figure 25: The PV prediction output from the system .. 37

Figure 26: The ChARGED mobile APP View of active challenges and who won challenges on the Dashboard 39

Figure 27: The ChARGED mobile APP Leader Board view with open details of a specific user 39

Figure 28: The ChARGED mobile APP review of challenges .. 40

Figure 29: an overview of The ChARGED mobile APP morning, lunch and evening challenges 40

Figure 30: The ChARGED mobile APP CHALLENGE SCREENS .. 41

Figure 31: NFC integration within the mobile app .. 42

Figure 32: BLE integration within the mobile app ... 42

Figure 33: The Game Backend INTERFACES .. 44

Figure 34: The Game Backend Internal architecture .. 45

D3.3 System Components

Page 7 of 47

ABBREVIATIONS

API Application Programming Interface

BLE Bluetooth Low Energy

CDC_ACM Communications Device Class Abstract Control Model

D Deliverable

eJRE embedded Java Runtime Environment

ID Identity

IoT Internet of Things

IP Intellectual Property or Internet Protocol

JSON JavaScript Object Notation

kWh Kilowatt hours

M Month

MVP Minimum Viable Product

 mPRM mPower Remote Manager

MQTT MQ Telemetry Transport

NDEF NFC Data Exchange Format

NFC Near Field Communication

PC Personal Computer

SSL Secure Sockets Layer

SQS Simple Queue Service

TCP Transport Communication Protocol

TLS Transport Layer Security

REST Representational state transfer

UML Unified Modeling Language

W Watts

D3.3 System Components

Page 8 of 47

WP Work Package

XSRF Cross-Site Request Forgery

D3.3 System Components

Page 9 of 47

EXECUTIVE SUMMARY
This deliverable presents the final ChArGED platform architecture and the specifications of all the system

components, functionalities and interfaces implemented.

The ChArGED system architecture consists of four main groups of functional blocks:

• The Data/Core Back-end group, responsible for providing an environment in which data, assets and users

are stored and managed.

• The Gateway group, responsible for integration of energy use and environmental data to the Back-end

system, to determine variations over the energy context within the building.

• The Analytics Back-end component, responsible for delivering insights that enable the ChArGED application

to deliver custom and targeted feedback and incentives to the end-users.

• The Gamification group, responsible for processing field data and insights created from such data and make

decisions as to the evolution of the game for each user, and for delivering the mobile app the end-users

interact with.

The ChArGED platform implementation will be utilised in three pilot sites for a period of 12 months. Because of the

unique challenges and specific environment conditions of each pilot, an Agile software development approach and

modular architecture were used, to enable gradual implementation/development with new application requirements

as they arise.

Functionality, architecture, and system interfaces are described for each component, and information about

implementation, testing and configuration of the system components is also provided.

D3.3 System Components

Page 10 of 47

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The goal of this deliverable is to present the updated and final version of the ChArGED architecture and platform

components implemented, providing a more detailed description of the components inner mechanisms and

interfaces. This deliverable being of Demonstrator type, showcases the implementation of the system components

via code samples, screenshots and run-time tests. Configuration and installation instructions are also given.

1.2 INTENDED AUDIENCE

The purpose of this deliverable is to document and demonstrate the software components and interfaces developed.

The intended audience is the project WP3 team especially developers. Sharing the architectural information with the

other technical WPs constitutes an important knowledge foundation on which to reach an integrated framework.

Members of the development team can use this report as guideline for future work.

This report also provides clarity on the deployment of the ChArGED system at a public building through various

installation stages. This report represents the working modules that can be used for hands-on system demonstration

and evaluation by intended public buildings.

1.4 DOCUMENT OVERVIEW

The key deliverable is the software development of the system components. This document provides an

accompanying guide on the developed software components and is organised as follows:

● Chapter 2 presents a refined and final version of the ChArGED architectural design

● Chapter 3 describes architecture and software implementation details for the Data/Core Backend

components

● Chapter 4 describes architecture and software implementation details for the Gateway component

● Chapter 5 describes architecture and software implementation details for the Analytics Backend

components

● Chapter 6 describes architecture and software implementation details for the Gamification System

components (mobile app and game engine)

● Chapter 7 concludes the document.

D3.3 System Components

Page 11 of 47

2 CHARGED SYSTEM ARCHITECTURE
This chapter presents the overall ChArGED platform together with the main functional blocks. The high-level dynamic

aspects of the system are also illustrated with Unified Modeling Language (UML) Sequence Diagrams. A more detailed

description of each component is provided in the next chapters, with details on their functionality, architecture,

interfaces and implementation status.

2.1 LOGICAL ARCHITECTURE

This section presents the final logical architecture of the ChArGED platform, with the functional blocks and their

interrelationships illustrated. The system architecture consists of four main groups of functional blocks:

● Data/Core Backend

● Gateway

● Analytics Backend

● Gamification System

FIGURE 1: THE CHARGED SYSTEM ARCHITECTURE

The Data/Core Backend group is responsible for providing an environment in which data, assets and users are stored

and managed. A collection of backend big data, IoT technologies based on Java Spring, SiteWhere, WSO2 Server, SQL

and NO-SQL databases, etc provide the software infrastructure on which the ChArGED application is developed. That

group of components is application agnostic, however it is tuned towards the needs of ChArGED project.

The Gateway group is responsible for integration of energy use and environmental data to the Data/Core Back-end

system, to determine variations over the energy context within the building.

D3.3 System Components

Page 12 of 47

The Analytics Backend component is responsible for delivering insights that will enable the ChArGED application to

deliver custom and targeted feedback and incentives to the end-users.

Finally, the Gamification group is responsible for processing field data and insights created from such data and make

decisions as to the evolution of the game for each user, i.e. what the next step is towards more energy savings. This

group also delivers the end user mobile app, which provides the user current game state and also information to the

system about the users’ behaviour towards the energy saving goals set.

2.2 PROCESS VIEW

This section deals with the dynamic aspects of the ChArGED platform. The system operation revolves around three

main process flows, depicted in the following with UML Sequence Diagrams. Details about individual components

and interfaces are described in the following chapters, and integration results will be presented in Deliverable D3.4.

1. Collection of data from the building via meters and environmental sensors connected to the ChArGED

gateway. Metered data is communicated to the Data/Core Back-end system via MQTT, and then assigned to

Devices for use by other system components. Sites, devices and assets are created beforehand via the

Administrative User Interface.

2. Claim of energy saving achievements from the end-users via the mobile app. Energy measurements

collected by the Gateway are sent to the Data/Core Back-end system and from there forwarded to the Analytics

backend for modelling of energy use. When the mobile app reports user-triggered NFC and BLE events via MQTT

or REST, such events are sent to the Data/Core Back-end system and from there are forwarded to the Analytics

backend for modelling of the energy use and the Game backend for accessing their effects on the game state.

3. Discovery of energy saving opportunities to assist the end users in saving energy. Energy measurements

collected by the Gateway are processed to create models of energy use. When new data are received, the

Analytics backend compares them with the expected energy use at that time of the day and diagnoses deviations,

which are in turn communicated to the Game backend. The Game backend will use that information to notify

the end users if savings opportunities exist.

D3.3 System Components

Page 13 of 47

3 DATA/CORE BACK-END SYSTEM
This section presents the Data/Core Back-end system components and infrastructure that allows the overall platform

to operate according to the game challenges requirements.

3.1 SITEWHERE SOFTWARE ENVIRONMENT

Sitewhere1 was chosen as the Data/Core Back-end system for our application, providing an open-source platform

with a number of rules and mechanisms for data exchange and operations.

3.1.1 DESCRIPTION AND OPERATION
SiteWhere is a system that facilitates the ingestion, storage, processing, and integration of device data. It provides

the core backend functionality by fulfilling very specific roles.

IoT Server Platform

SiteWhere’s main functionality is to supply a server based JAVA SPRING middleware between the sensing

infrastructure and the different system components and acts as a controller for the processing of device data. It

connects with noSQL & Timeseries databases in order to provide persistence of the logged data and scales with large

number of devices so the whole history of the infrastructure is maintained and can be accessed at any point. It also

provides the tools in order to structure the devices and categorize them according to their type, location and

ownership and offers full control on a device’s lifecycle (providing the functionalities of creating, deleting, updating,

grouping, sending data). Moreover it provides an HTML5 administrative application that allows all of the system data

to be viewed and manipulated in a structured way which makes their overview and administration easier and also

more accessible to less experienced administrators.

Entity Structure/Device Management

As mentioned above, SiteWhere provides the tools to structure the entities according to their type, their location and

their ownership, which greatly enhances the efficiency that the system can be administrated and the data processed.

The available functionalities are:

· Each new asset or entity (i.e. a sensing device, an appliance, a specific location area, a person) is assigned

a unique id and can be autonomously managed via external software. Specifically for devices a model for

standard types of event data generated by them is provided (which includes measurements, alerts issued

and location updated by the device) and the event that are logged are stored in massively scalable time

series datastores (InfluxDB).

· The devices can be assigned to / associated with other entities. A device (a printer, an air conditioner, a pc

etc) can be associated with a person, a location or another sensor device of our infrastructure thus giving

us the ability to establish ownership room/location metadata and establish relationships with device.

· Devices can be grouped together according to a common role they fulfil, something that enhances

efficiency by simplifying the way the devices can be retrieved by other backend processing services.

1 http://www.sitewhere.org/

D3.3 System Components

Page 14 of 47

· Every top level entity is modelled as a tenant and can have a completely different configuration and

structure without affecting other tenants. This can be used for modelling infrastructures that are unrelated

to each other such as different locations, different buildings, pilot users etc on the same server.

Integration

SiteWhere provides an extensive list of third party frameworks and software tools that it can be connected with in

order to extend its capabilities. The options include different databases, identity management frameworks, event

streamers, event processors and others. Moreover being an open source software solution, new interfaces with other

software tools and services can be created as needed. External communication with SiteWhere can be achieved via

a built in extensive REST APIs. A communication interface utilizing the MQTT protocol is also implemented that can

be used by devices and other embedded systems to send or get notified about new events and sensor data (e.g.

NFC/BLE alerts and energy measurements).

3.1.2 IMPLEMENTATION

3.1.2.1 ARCHITECTURE

SiteWhere is the main data management solution, and provides APIs that the rest of the subsystems can use to send

and request data from the database. Two public interfaces are used to establish this communication:

· The mosquitto MQTT broker, mainly used by the deployed IoT devices to provide efficient communication

taking advantage of the lightweight characteristics of the MQTT protocol, and

· Rest APIs, mainly used by platform components and 3rd party software systems.

FIGURE 2: ORGANISATION OF SITEWHERE SYSTEM COMPONENTS

The server is exposed to the public internet, therefore is password protected so only authorized clients can login and

use it. Credentials can be provided on request to the project coordinator.

D3.3 System Components

Page 15 of 47

3.1.2.3 INSTALLATION AND CONFIGURATION STEPS

In current setup the software is installed on a server running Linux CentOS 7. The software is extracted on the machine

and the installation process is executed as described in detail in

http://documentation.sitewhere.io/userguide/installation.html.

Upon successful installation, the user logs in with the default credentials (mentioned in the instructions above),

changes the default passwords and creates new accounts as needed. Furthermore, communication with databases,

MQTT brokers and the different backends needs to be configured. These configurations can be made from the

‘Tenant Configuration’ tab inside SiteWhere, as shown in the picture below.

3.2 DATABASES (INFLUXDB, MONGODB)

3.2.1 DESCRIPTION AND OPERATION

Time series (InfluxDB) and noSQL (MongoDB) types of database are used in the ChArGED platform. SiteWhere can

use a hybrid approach where device management (meta) data is stored in MongoDB while event data (such as

measurements and device alerts) is stored in InfluxDB which is optimized for fast, high-availability storage and

retrieval of time series data. Both DBs are accessed through the SiteWhere’s API. This choice provides a best of both

worlds advantage, by enabling different features of each database for the different data stored in each one.

InfluxDB is a free and open-source cross-platform highly-scalable time series database that supports advanced

clustering and performance.

MongoDB is a free and open-source cross-platform document-oriented database. Classified as a NoSQL database,

MongoDB uses JSON-like documents with schemas. It is used to store the entities inside SiteWhere (i.e. sites,

specifications, assets, devices, assignments and generally all data that are used to describe objects, users, locations

and their relations). MongoDB is used because of its increased flexibility and performance.

3.2.2 IMPLEMENTATION

3.2.2.1 ARCHITECTURE

The databases are connected to and managed by SiteWhere which in turn provides a REST API and an MQTT interface

that all the other system components can use in order to connect to the databases.

FIGURE 3: SITEWHERE’S TIME SERIES AND NOSQL DATABASES

3.3 USER MANAGEMENT (WSO2 IDENTITY SERVER)

3.3.1 DESCRIPTION AND OPERATION

http://documentation.sitewhere.io/userguide/installation.html

D3.3 System Components

Page 16 of 47

WSO2 is an open source technology provider that offers an integrated enterprise platform for APIs, applications, and

web services—locally and across the internet. Their WSO2 Identity Server2 is natively integrated to SiteWhere to

provide a secure identity management by managing identity and entitlements of the users securely and efficiently.

The Identity Server enables developers to reduce identity provisioning time, guarantee secure online interactions,

and deliver a reduced single sign-on environment. The WSO2 Identity Server gives us the possibility to securely

manage user accounts and enable persistence login for users across platforms, from the mobile app to other

components. All user accounts and user information are created and managed inside this server. This provides us

with a high level of security and protection of the sensitive user data. SiteWhere communicates with WSO2 Identity

Server through a secure interface and obtains the information needed for importing a user in the system.

3.3.2 IMPLEMENTATION

3.3.2.1 ARCHITECTURE

The Identity Server provides a System for CrossDomain Identity Management (SCIM) interface which is a schema for

representing users’ identities in conjunction with a REST API. This is used to manage users remotely in order to

support user creation and user information management through the mobile app. The same interface is used by

SiteWhere to automatically parse users and insert them into the system.

FIGURE 4: SITEWHERE’S IDENTITY MANAGEMENT THROUGH WSO2 IDENTITY SERVER

User Interface

The user interfaces in Sitewhere are oriented for the internal project developers of project components and the

administrators of the pilots. It is not intented for end –users, who will access all related information only by the game

user interface, specifically designed for this.

All the functionality is accessible through the interface’s side bar. Through the interface we can manage user

provisioning (i.e. create, update and delete user accounts) as well as configure access rights and policies.

The identity server is configured to provide authentication and authorization services to the users already in the

system. This is used by the mobile app in order to sign in/sign out the people that are playing the game. Currently

the OAuth 2.0/OpenID Connect authorization/authentication scheme is used. This flow after the user is authenticated

2 http://wso2.com/identity-and-access-management

D3.3 System Components

Page 17 of 47

provides the client (mobile app) with an expiring access token that in turn enables us to keep the user signed in for

longer periods of time until the token expires or until the user signs out decreasing the frequency that the user needs

to enter her credentials.

3.3.2.3 INSTALLATION AND CONFIGURATION STEPS

The WSO2 Identity Server is licensed under Apache License Version 2.0 and available for download at

http://wso2.com/identity-and-access-management. The software is downloaded and installed on the server. After

the installation the default password is changed and new admin user accounts are added as needed.

3.4 ASSET MANAGEMENT/USER INTERFACE

3.4.1 DESCRIPTION AND OPERATION
SiteWhere provides a number of entities that can be used standalone or combined with other entities in order to

represent our systems. The main categories are outlined below.

Tenants

SiteWhere provides an architecture where multiple IoT applications can run concurrently in separate containers. Each

container is called a tenant and contains its own data and processing pipeline. Each tenant is associated with one or

more system users which are allowed to configure and control it.

Device Specifications

Specifications are used to capture characteristics of a given hardware configuration. This is not necessarily a one-to-

one mapping to a part number since some peripheral devices may have been added or certain characteristics

upgraded. A device specification contains a reference to a hardware asset which provides the basic information about

the hardware including name, description, image URL, etc

Devices

Devices are a SiteWhere representation of connected physical hardware that conforms to an assigned device

specification. Each device is addressable by a unique hardware id that identifies it uniquely in the system. A new

device can register itself in the system by providing a hardware id and device specification token. SiteWhere in turn

creates a new device record via the APIs and (optionally) creates a placeholder unassociated device assignment (see

below) to allow events to be collected for the device. Devices can be manually added via the REST services or via the

admin UI.

Device Assignments

Events are not logged directly against devices, since a given device may serve in a number of contexts. For instance,

a visitor badge may be assigned to a new person every day. Rather than intermingle event data from all the people a

badge has been assigned to, the concept of a device assignment allows events to be associated with the asset they

relate to at the time of the event. A device assignment is an association between a device, a site, and (optionally) a

related asset. Some assignments do not specify an asset and are referred to as unassociated. A real-world example

of this is a vending machine that has wireless connectivity to report inventory. The device is the asset, so there is no

need to associate an external asset.

http://www.apache.org/licenses/LICENSE-2.0
http://wso2.com/identity-and-access-management

D3.3 System Components

Page 18 of 47

Assets

SiteWhere assets represent objects in the physical world – people, places, and (dummy) things. Device specification

assets are used to describe the hardware information/configuration for a type of device. Device assignment assets

are used to describe an entity associated with a device – a person associated with a badge, an appliance associated

with a smart meter, or a room associated with a BLE sensor.

The above entities are used standalone or are combined in order to represent the objects, users and their

relationships in our systems.

3.4.2 IMPLEMENTATION

3.4.2.1 ARCHITECTURE

3.4.2.2 IMPLEMENTATION STATUS

In the CHArGED SiteWhere Backend, tenants have been used in order to model the different pilots. There is also a

tenant dedicated to the development and testing.

FIGURE 5: THE SITEWHERE ASSETS, DEVICE AND METADATA ORGANISATION

D3.3 System Components

Page 19 of 47

FIGURE 6: ILLUSTRATION OF THE SITEWHERE TENANTS CREATED FOR EACH PILOT SITE

Inside these tenants, we have modelled different sites for each pilot. These sites are modelled with regard to the

building blueprints, as shown in the pictures below for the pilots in Luxembourg and Athens.

D3.3 System Components

Page 20 of 47

FIGURE 7: ILLUSTRATION OF HOW THE DIFFERENT PILOTS ARE DECOMPOSED INTO SUB-SITES WITHIN SITEWHERE

Assets are then created as described in the previous section. For example, device assets have been implemented to

describe common devices found in the pilots, see Error! Reference source not found..

D3.3 System Components

Page 21 of 47

FIGURE 8: ILLUSTRATION OF THE ASSIGNMENT OF DEVICES TO ASSETS IN SITEWHERE FOR THE PILOT SITES

New devices and assignments will be created as needed to insert new assets and devices in our system (new

employees, new devices etc).

3.5 RAW DATA VISUALIZATION (GRAFANA)

3.5.1 DESCRIPTION AND OPERATION
Grafana3 is a powerful open-source visualisation frontend optimized for time series databases such as InfluxDB. When

working with sensor data a developer can be overwhelmed by the volume and the difficulty of exploring data with

command line queries. Grafana allows us to quickly plot raw data from the SiteWhere database (InfluxDB) and create

dashboards in a drag and drop manner. Within the scope of ChArGED project, it is mainly used as a development /

debugging tool to quickly visualise raw sensor / user data, and assist integration between all subsystems, for any

partner to use on his/her own. Furthermore, as the development progresses, Grafana embedded dashboards might

be used to enrich specific user screens if needed. Grafana is part of the visualization of the Sitewhere, that facilitates

the analytics. It is therefore also intented for the pilot site administrator or the energy analytics experts in the project.

3 https://github.com/grafana/grafana

D3.3 System Components

Page 22 of 47

3.5.2 IMPLEMENTATION
Grafana is a standalone server like software, developed in Go language, and runs along with the Data/Core backend

server, in order to achieve direct/fast/easy access to the InfluxDB database.

FIGURE 9: EXAMPLE OF DATA COLLECTED BY ZWAVE PLUGS IN THE DAEM PILOT SITE

4 SENSOR GATEWAY
This section focuses on the Gateway functionality developed for the purpose of ChArGED, which is about collecting

and making data from the building / physical world environment available to the Core platform.

4.1 SENSOR GATEWAY SYSTEM ARCHITECTURE

To achieve the “Data Acquisition” process outlined in section 2.2, the Sensor Gateway has two connection interfaces

within the global architecture:

· Building sensors (e.g. Smart plugs and Smart Meters)

· SiteWhere Data/Core backend

Various hardware and software requirements have to be fulfilled to support the needs of the platform. The ProSyst

mBS gateway software4 by Bosch Software Innovations is used as basis of the Sensor Gateway used in the ChArGED

project. For the remote software management and provisioning of the product, the ProSyst mPower Remote

Manager (mPRM) by Bosch Software Innovations is also used (in a separate AWS instance, beside the ChArGED

backend).

4 https://www.bosch-si.com/iot-platform/iot-platform/gateway/software.html

D3.3 System Components

Page 23 of 47

The Raspberry Pi5 (version 3 Model B) was chosen as hardware basis for the ChArGED Sensor Gateway. The Raspberry

Pi is installed with a standard Raspian OS, including the Oracle embedded Java Runtime Environment (eJRE), the

Communications Device Class Abstract Control Model (CDC_ACM) USB to serial driver and, as mentioned before, the

ProSyst mBS Runtime for ChArGED.

FIGURE 10: THE RASPBERRY PI (VERSION 3 MODEL B USED AS HARDWARE PLATFORM FOR THE SENSOR GATEWAY

SOFTWARE

The data collection process required development of sensor drivers to retrieve data from third party sensors using

industry leading communication protocols.

For the connection of Z-Wave devices, many controller options have been investigated, and two units have been

selected:

● “Razberry” GPIO Module for Raspberry Pi (for both testing and pilot site deployment)

● USB Z-Wave Controller (for testing)

Two Z-Wave devices were connected to the Sensor Gateway using those controllers:

● Fibaro Smart Plugs

● Fibaro 4in1 Sensor (Temperature, Humidity, Luminosity, Motion/Presence)

These devices are already managed by the mBS Runtime and included into the product portfolio, which allowed data

to be immediately collected from the devices.

The AcuRev 2000 multichannel Modbus meter by Accuenergy was also connected to the Sensor Gateway via the

Modbus protocol, to collect energy measurements at the three pilot sites.

All connected devices communicate their data to the Sensors Gateway, which preprocesses and forwards it to the

SiteWhere backend via MQTT, as depicted in Figure 11.

5 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

D3.3 System Components

Page 24 of 47

FIGURE 11: ILLUSTRATION OF THE SENSOR GATEWAY DATA COLLECTION, PROCESSING AND COMMUNICATION TO

SITEWHERE

4.2 HDM/SITEWHERE INTEGRATION

4.2.1 DESCRIPTION AND OPERATION
The Bosch’s ProSyst mBS Sensor Gateway component is not natively compatible with SiteWhere’s asset management

backend, thus a mapping was required and implemented.

On the mBS Sensor Gateway side, devices connected to the gateway (e.g. Z-Wave smart plugs) are assembled through

the Home Device Manager (HDM) abstraction layer HDM, in order to have a protocol independent layer for

developers, who want to develop against the same API for every connected device.

SiteWhere provides a SSL-TLS secured MQTT interface to add, delete, update and control assets connected to it.

Therefore, integration between the HDM on client side and SiteWhere on the backend side has been developed.

4.2.2 IMPLEMENTATION

4.2.2.1 ARCHITECTURE

The diagram in Figure 12 shows the main blocks involved into the Raspberry Gateway software. On top of the

standard OSGi modules new dedicated ZWave Connector and SiteWhere Service module have been developed,

marked with blue colour.

D3.3 System Components

Page 25 of 47

FIGURE 12: INTEGRATION OF THE SENSOR GATEWAY’S HDM WITH SITEWHERE VIA MQTT

4.3 MODBUS DEVICE INTEGRATION TO SITEWHERE

4.3.1 DESCRIPTION AND OPERATION
The Sensor Gateway was enhanced to collect energy readings in near real-time resolution (10 - 30 seconds) from the

multi-channel power and kWh AcuRev 20006 meter from Accuenergy installed at the pilot sites (reference device for

the implementation) and the Kaco Solar Inverter (deployed at DAEM site) as additional integrated energy meter

device.

The AcuRev 2000 provides a Modbus interface which can be accessed in real-time. This interface was used to

integrate the meter to the Gateway Software. Gathered data is sent directly to the SiteWhere backend.

The Kaco Solar Inverter provides its generated power and energy values also over a Modbus interface. It is integrated

like the AcuRev 2000 into the Gateway software and the SiteWhere backend.

4.3.2 IMPLEMENTATION

4.3.2.1 ARCHITECTURE

Figure 13 shows the main blocks involved into the Raspberry Gateway software. On the top of the standard OSGi

modules are developed dedicated Modbus Connector and SiteWhere Service modules, marked with blue colour.

6 https://www.accuenergy.com/product/acurev-multi-circuit-power-metering-system

D3.3 System Components

Page 26 of 47

FIGURE 13: MODIFICATIONS TO THE SENSOR GATEWAY FOR INTEGRATION OF MODBUS METERS

5 ANALYTICS BACKEND
This section focuses on the Energy Analytics functionality of the ChArGED platform, based on the proprietary

technology provided by Wattics. Wattics backend analytics engine already exists as a commercial product and we

first outline its main features to provide context and system architecture in which the new components have been

developed. In a second step, we document the new system components developed for ChArGED, and the

components that have been modified for ChArGED, as well as showcase the means of integration within the ChArGED

core backend.

5.1 WATTICS BACK-END ARCHITECTURE

The Wattics Energy Analytics backend, depicted in Figure 14, is connected to the ChArGED’s Sitewhere Core Back-

End to enable the creation of actionable insights from raw energy measurements taken at the pilot sites, allowing

the game engine to validate game challenges and measure the impact of various user actions over the overall energy

expenditure.

FIGURE 14: THE WATTICS CLOUD BACKEND SYSTEM ARCHITECTURE

The Wattics backend is interfaced with the Sitewhere backend via RESTful web services, which allow energy

measurements, NFC swipe alerts and BLE location events to be received as input, and measurements of load demand

reduction, energy savings and energy saving opportunities to be returned. Authenticated data streams are processed

in real-time through parallel analytics engines to produce valuable insights for the application.

The Wattics backend infrastructure is brought to the project as background IP, and has been adapted to the needs of

the project as follows:

D3.3 System Components

Page 27 of 47

- New API endpoints to process NFC and BLE data packets;

- New analytics engine to validate control actions have been taken by users (e.g. device switched off when

going home or when away for more than N minutes), and to estimate the energy savings achieved by such

actions;

- New analytics engine to diagnose inefficient operation of electrical devices based on concurrent power

activity (e.g. A/C left on when window is open), and to estimate the energy wasted due to such actions;

- New notification mechanism to export insights generated to Sitewhere.

In addition to these modifications to the Wattics backend, a micro service was developed to sit in between SiteWhere

and the Wattics Analytics backend to enable seamless integration of both backend systems via Amazon SQS. The

following provides more details about the new analytics engines developed specifically for the needs of the project,

as well as the Wattics SQS Poller connecting the pieces together.

5.2 COMPONENT FOR AUTOMATED DISAGGREGATION AND ALLOCATION OF ENERGY SAVINGS

5.2.1 DESCRIPTION AND OPERATION
The game concept involves users saving energy within the floor plan through a range of energy conservation

measures triggered by the game challenges, and claiming such savings by swiping their NFC enabled smartphones

over NFC tags located nearby electrical appliances or their controllers. The game app therefore needs to validate that

such actions are really taking place, and to assign impact / challenge scores accordingly. As such, the objective of this

new software component is to disaggregate energy saving actions from the overall set of normal actions taken

throughout the day by the various users, and assign the savings achieved to the users.

It is important that the platform back-end validates each action taken by a user, as the game relies on counting points

based on the completion of challenges. Any action taken must lead to a reduction in energy use for a specific

appliance (or group of appliances), which must be identified as the action occurs. As such the back-end analytics

system must:

1. Monitor energy use for a given appliance (or group of appliances) affected by a user’s control action. This

means monitoring energy use within the premises at a granularity that allows for the energy use pattern of the

specific appliances to be monitored individually.

2. Detect changes in energy use over that circuit that relates to the NFC swipe or BLE event from the user.

Submetering an entire electrical equipment inventory with submeters and smart plugs was not an option because it

was too costly. Identifying an appliance’s energy use pattern in software from an electrical measurement taken at

the main incomer of a building was neither suitable, as the number and nature of devices fed from that single circuit

does not allow for software load disaggregation based on power signatures. Indeed, in office buildings, all computers

‘exhibit’ a similar power footprint on the power line, preventing any software load disaggregation to work accurately.

The only commercially viable option, the one adopted within the project, is to submeter medium-level electrical

circuits feeding groups of appliances (e.g. set of fancoil units in the same room), and run analytics on the data

collected to monitor power variations of specific electrical equipment fed from such circuits. Concretely, this means

for example monitoring a circuit feeding all the power plugs of a meeting room (as opposed to monitoring each wall

socket of a meeting room), allowing localised analytics on a smaller subset of electrical units for better accuracy and

D3.3 System Components

Page 28 of 47

feedback for the game app. This approach of submetering a subset of key electrical circuits is reflected in Deliverable

D4.2, where the monitoring setup for all pilot sites is documented.

A new analytics engine was developed to run on such medium-level circuit measurements in order to provide a

validation and measure of savings achieved by a specific control on an electrical appliance fed from that circuit.

We have initially intended to convert the medium-level circuit measurements into appliance-level measurements

with techniques such as software load disaggregation, as the number of electrical devices fed from the medium-level

circuits would not be a major constraint anymore. Yet, while software load disaggregation is a methodology proven

in domestic environments with many commercial products reviewed in Deliverable D2.1, it falls short in public

buildings and generally larger-scale environments, for which no commercially viable solution exists. The main reason

is that while households can be counted in millions with each site using the same set of home appliances, providing

training datasets to enable self-learning and auto-configuration, public building environments all differ in size and

type, with new equipment being added or replaced regularly. The latter calls for manual configuration and re-

configuration for each deployment, and is not scalable for a commercial solution targeted to public buildings. For

that reason, the cost of designing a software load disaggregation engine that should work in all public environments

far exceeds the needs and scope of the project, and we have instead opted for an analytics engine that requires

minimum to no configuration and that can scale to any environment.

Within ChArGED, the validation that a control action claimed by a user is really implemented is achieved with circuit-

level measurements taken by physical meters, combined with metadata provided by the user swipe events and

beacon location sensors. The principle of such analytics is energy use allocation, where energy reduction events are

disaggregated from the power signal thanks to user-triggered notifications, and allocated to users associated to the

equipment being operated.

FIGURE 15: ILLUSTRATION OF POWER DROP MEASUREMENT ON A SINGLE ELECTRICAL READING WITH NFC SWIPE

EVENTS FROM USERS PROVIDING THE NAME OF THE APPLIANCE CAUSING THE DROP

The disaggregation and energy allocation engine works as follows:

1. The Sitewhere’s core/backend platform informs the Wattics Analytics engine that an appliance has been

operated by the user after it received an NFC swipe alert from the user’s mobile app.

2. The Wattics analytics software runs the NFC swipe alert against the power measurements of the circuit

feeding the appliance operated by the user to detect significant power variations.

3. The Wattics analytics software analyses the power variations and informs the Sitewhere core/backend

platform of the drop in energy use measured in relation to the user’s operation of the appliance, as well as

a quantification of the savings achieved by doing so.

D3.3 System Components

Page 29 of 47

4. The game backend calculates the points to be given to the user and the savings are stored within the

platform database.

In particular, the measure of power variations and associated drop in load demand (before and after NFC swipe event)

as well as the energy savings generated are assessed by the analytics engine using kW variations, the expected period

for which the equipment will have been left on, and other conditions which need to be taken account to adjust the

real savings (e.g. atmospheric conditions).

Game challenges based on NFC swipes

It is expected that more than one device will be fed from any electrical circuit. For that reason, the power

measurements collected by the platform correspond to the entire set of devices connected to a given circuit, and not

only one computer or light bulb. The objective is to measure how much impact a user has had on the circuit’s energy

use; this is done by comparing the circuit’s load pattern before and after ChArGED is introduced, using the NFC swipes

as triggers and BLE/work hours information as time delimiter.

As illustrated in Figure 16, where the usual load demand pattern of a given electrical device is in green and the real

load demand measured is in blue, the difference between the two load curves is minimal with no savings achieved if

a user was already switching the device off before ChArGED was introduced.

FIGURE 16: ILLUSTRATION THAT NO KWH SAVINGS ARE ACHIEVED BY A SPECIFIC USER CONTROL ACTION, WHEN

THAT ACTION WAS ALREADY CONDUCTED BEFORE CHARGED WAS INTRODUCED.

On the other hand, a major reduction is measured if the user switching off the device is new, as illustrated in 38.

FIGURE 17: ILLUSTRATION OF THE KWH SAVINGS ACHIEVED BY A SPECIFIC USER CONTROL ACTION

The calculation of savings therefore requires:

D3.3 System Components

Page 30 of 47

1. The load demand curve for that circuit before ChArGED is introduced;

2. The load demand curve measured for the circuit;

3. Period for consideration (when the device would have potentially been left powered on)

PCs are operated by their owners, and are seldom switched off by other staff. For that reason, we can assume that

the period for which savings can be assessed after a PC has been switched off is directly linked to when the user

returns to his desk, either later in the day or the day after. This information can either be provided by BLE information,

or inferred from office work hours.

Lights and A/C units are operated by more than one person, and the period for which savings can be assessed after

a light or A/C unit has been switched off is directly linked to when any user enters the room. This information can

either be provided by BLE information.

BLE alerts are generated when a specific user returns to its original location, or when any user returns to a location,

which allows the Analytics backend to trigger the savings calculation, using the period between the NFC OFF event

and the BLE alert.

FIGURE 18: ILLUSTRATION OF THE KWH SAVINGS ACHIEVED BY A SPECIFIC USER CONTROL ACTION DELIMITED BY A

BLE ALERT

When BLE alerts are not available, savings calculation is automatically triggered at the start of the day when most

staff returns to work, e.g. 8AM, using the period between the NFC OFF event and the work hour.

FIGURE 19: ILLUSTRATION OF THE KWH SAVINGS CALCULATION TRIGGERED AT THE START OF THE DAY COVERING

THE PERIOD FROM THE NFC SWIPE EVENT TO WHEN THE USER IS EXPECTED TO BE RETURNED AT HIS DESK

D3.3 System Components

Page 31 of 47

In the case multiple users swipe their NFC stickers to indicate they switch their PCs off when going home, the period

covered will not change but the savings measured on the circuit will increase according to all the control actions made

by the users.

FIGURE 20: ILLUSTRATION OF THE KWH SAVINGS CALCULATION TRIGGERED AT THE START OF THE DAY COVERING

THE PERIOD FROM THE FIRST NFC SWIPE EVENT TO WHEN THE USERS ARE EXPECTED TO BE RETURNED AT HIS DESK

A special case also exists when dealing with game challenges targeting elevators, when savings are calculated every

time a user uses the stairs. For those game challenges NFC stickers are placed in the middle of the stairs and the users

must swipe their phones to indicate they use the stairs. The savings calculation procedure depicted above cannot be

implemented because the event in itself is too short for any power measurements to be made, unless the monitoring

sampling granularity is at second-level. An elevator trip can indeed be a matter of seconds, so measuring the load

demand is difficult. The approach taken here is to calibrate the energy used for an elevator trip, when the ChArGED

application is commissioned, and add that figure to the savings achieved for every single staff trip via the stairs.

Game challenges based on BLE presence detection

BLE offers an advantage as opposed to NFC swipes, as it provides two alerts to the Core/Backend system, when a

user leaves a location and when it returns to the location. For that reason, the period for consideration when

measuring savings is delimited by those events.

FIGURE 21: ILLUSTRATION OF THE KWH SAVINGS CALCULATION DELIMITED BY BLE ALERTS WHEN A USER LEAVES

AND RETURNS TO A LOCATION

5.3 COMPONENT FOR AUTOMATED DISCOVERY OF ENERGY SAVING OPPORTUNITIES

5.3.1 DESCRIPTION AND OPERATION
The game app needs to provide suggestions in the game based on individual consumption patterns. This translates

into the need for the platform to identify waste patterns and energy saving opportunities that can then be notified

to the end users.

D3.3 System Components

Page 32 of 47

5.3.2 IMPLEMENTATION
Wattics’ existing Sentinel analytics engine is used as infrastructure and was updated to serve the needs of the project.

Wattics Sentinel Analytics is a software engine that models energy use over time and detects unexpected/abnormal

energy patterns as they occur. For instance, the software can model what the energy use should be in a meeting

room on a Monday at 3PM, and will be able to issue a notification should the actual energy use deviates from the

expected pattern.

Within ChArGED, the engine is deployed to create the same energy model and detect anomalies, but the notifications

and feedback to the SiteWhere backend are more valuable thanks to the additional context provided by presence

detection beacons and NFC swipes. The analytics engine links notifications to specific users, and relates to specific

control actions that can be taken within the area (room). Control actions taken in the past may also be used as

references when new anomalies and energy saving opportunities are discovered.

5.3.2.1 ARCHITECTURE

The modelling engine requires time-series data, and takes as input:

• Energy measurements (electricity, water, gas, fuel, heat consumption etc)
• Real-time data (active/apparent/reactive power, flow, voltage, current, etc)
• Environmental data (temperature, humidity, occupancy etc)

• User data (NFC swipes, etc)

Environmental datasets are used for normalisation of the energy/real-time data before modelling, and other datasets
such as user data are used to discard energy events linked to user triggered events (for validation that the deviation is
not the result of a user action).

The model creation process is divided in three parts:

• Outlier detection to discard outliers periods,
• Cluster algorithm to group together periods with a similar pattern

• Creation of inner/outer band creation, which define the boundaries for the range of values that we expect to
match with future readings.

1. Outlier detection

The outlier detection algorithm is configured to discard measurements based on specific rules dictated by the dataset

constraints. For example, with a 4-week window period, all elements that do not fit within the 90% percentile can be

discarded, with a maximum of one element discarded per period. In this implementation, we use the LOF outlier

detection algorithm, looking at the Euclidian distance between elements. The output LOF coefficient is processed to

discard elements outside the denser region.

2. Clustering mechanism

The clustering algorithm uses k-means to compare individual time periods and create clusters of similar periods. The

metric used to compare the data is the squared Euclidean distance. As input to the clustering algorithm, we used

one-day time periods defined by their 24 hourly mean, maximum and minimum load demand values. A metric based

on Sum of Square Errors was used to decide the number of states that represents best the similarity between periods.

D3.3 System Components

Page 33 of 47

3. Inner/outer band

The measurements for the group of days identified within a same state are used to create a model, composed of two

thresholds: an upper and a lower threshold. The area between the two thresholds indicates the area where we expect

the values to fall inside.

We define the upper and lower thresholds as the 5th and 95th percentile, see Figure 22.

FIGURE 22: MODEL CREATION SHOWING HISTORICAL MEASUREMENTS (BLUE DOTS) AND THE MODEL (GREEN

AREA)

When the models are created and enabled, an event recognition engine compares new measurements against the
model to identify unexpected deviations. When detected, a message is sent to the user to point to the anomaly and
the potential energy saving opportunity.

Various degrees of tolerance can be considered for issuing notifications, so as to avoid spam and false positives. For
instance padding is added to the model and rules on the continuity of the deviation can be considered (e.g. duration,
kWh cost, repetition, related user-triggered event etc).

Based on the user context, such as the time of the day, the location and the user’s association to a specific device, the
software will create a specific event to the gamification engine indicating the deviation specific and the device/circuit
affected. This will allow the game mechanics to interact with the end-user and get them to address that saving
opportunity.

5.4 ENERGY MANAGER FRONT-END DASHBOARD

5.4.1 DESCRIPTION AND OPERATION
The Energy Manager Front-End dashboard allows the facility manager, and possibly the manager of the game within

the building, to monitor the overall savings achieved within the building. While the mobile app tracks individual

achievements, the dashboard aims to review the overall impact of the savings strategy, with no interest on the users’

scores and ranking.

The facility manager wants to quantify the overall savings achieved by the introduction of the ChArGED application.

For this purpose, the facility manager will connect to the dashboard on a daily or weekly basis, to get update on the

savings achieved and the energy use trend compared to same periods in the past. Because facility managers are very

D3.3 System Components

Page 34 of 47

busy, they will only spend a few minutes each time they connect, but may spend a few hours each month to produce

monthly reports to management.

Facility managers with energy management background are at ease with modern technology, and used to work with

energy data. Facility managers converted to energy managers over time may not have the same expertise, but our

experience tells us that they are comfortable with graphs and simple data analysis.

The dashboard was designed to be used as a tool to monitor and report on the savings achieved, and as such does

not require the minimum granularity available at the meters or real-time display. The data is however normalised

and unified to be presented with a common periodicity for analysis, and with a delay that does not exceed 15mn.

5.5 COMPONENT FOR MICROGENERATION ENERGY FORECASTING

5.5.1 DESCRIPTION AND OPERATION
Solar energy generation has been deployed in the DAEM pilot site, in order to maximize the building energy savings,

increase end user awareness and also try to use the mobile app to maximize the solar-based electricity consumption

during production, avoiding the need of energy storage.

The solar solution utilizes a solar inverter (Kaco) with rich data communication capabilities (modbus TCP protocol) in

order for the generated electricity to be as analytically monitored as possible to assist production forecasting

mechanisms. Solar inverter will be connected to the gateway and its gateway middleware IoT integration software

mBS SH. Through the device abstraction of the mBS SH the data will be prepared for the ChArGED backend and sent

via MQTT to the ChArGED core platform and distributed to all other system components.

The Component for Microgeneration Energy Forecasting calculates periodically and sends to the SiteWhere core

backend the expected energy generation per hour for the following day(s).

An external server, part of Plegma’s cloud infrastructure, is utilized to provide the solar power microgreneration

forecast, for the system deployed at DAEM pilot site, based on weather forecast of the specific area (Athens, Greece).

The server is connected to a 3rd party weather forecast provider APIs to pull the weather forecast data

(OpenWeatherMap). The service collects data for each day and a 5 day ahead forecast and saves it into a database.

For each day, there is hourly forecast that is used to predict the PV power output.

5.5.2 IMPLEMENTATION
Implementation is based on theoretical principle of photovoltaic power production (analysis follows) enriched with

Plegma’s optimizations for taking in to account the characteristics of the particular system deployed in one of the

pilot sites (DAEM) in order to produce a more accurate forecast.

D3.3 System Components

Page 35 of 47

FIGURE 23: OVERVIEW OF THEORETICAL PRINCIPLES OF PHOTOVOLTAIC POWER PRODUCTION 7

The incident solar radiation has been taken from the PVGIS8, a European founded project supported by the European

Commission Joint Research Centre.

7 http://www.egr.msu.edu/classes/me417/somerton/SolarCalc.pdf

8 http://re.jrc.ec.europa.eu/pvgis/

http://www.egr.msu.edu/classes/me417/somerton/SolarCalc.pdf
http://re.jrc.ec.europa.eu/pvgis/

D3.3 System Components

Page 36 of 47

In order to be able to calculate the PV production on an hour interval we used more advanced calculations. One such

model, used in the basic solar energy system model, is the half-sine solar irradiance model. The only input required

is the times of sunrise, sunset, and the peak noontime solar irradiance level

𝐼 = 𝐼𝑛𝑜𝑜𝑛𝑠𝑖𝑛 [
180 ∗ (𝑡 − 𝑡𝑠𝑢𝑛𝑟𝑖𝑠𝑒)

(𝑡𝑠𝑢𝑛𝑠𝑒𝑡 − 𝑡𝑠𝑢𝑛𝑟𝑖𝑠𝑒)
]

The input values for sunrise and sunset are taken form the a 3rd party API (OpenWeatherMap) and by using the

Momentjs library and the country of the installation we can calculate the time t for the formula.

Using the above formula, we can modify our prediction from daily to hourly.

Plegma’s implementation has a form to define the values and the location that you want to predict the PV energy

Forecast for.

FIGURE 24: PLEGMA’S SOLAR MICROGENERATION FORECAST CONFIGURATION SCREEN

That form sends through a web-socket the information to the server. The server checks the location and in case it is

a new location then a prediction site is created otherwise the prediction is sent to the client. For each prediction site,

the server calls the weather API to get forecast data and starts to calculate the PV production.

D3.3 System Components

Page 37 of 47

FIGURE 25: THE PV PREDICTION OUTPUT FROM THE SYSTEM

The server responds with the prediction and the number of panes you can install on the area you entered. These data

are saved to a database and can be used again to just get the forecast.

D3.3 System Components

Page 38 of 47

6 MOBILE APP

1.1 FRONT-END

IMPORTANT NOTE: This task has been implemented so far by partner PEAK. There is a first version that has been

implemented with the current plan. As the participation of PEAK in the project has been terminated, it is taken over

to be implemented by European Dynamics SA. The implementation plan is changed and will be reported in the

periodic report.

6.1.1 DESCRIPTION AND OPERATION
The Charged Mobile App provides the front-end towards the user, visualizing the whole backend mechanics and

provided data in a user friendly, appealing, modern and motivating interface to ensure continuous usage of the app.

The app is intended to run on Android Mobile phones supporting API Layer 21 (Lollipop) and being equipped with

NFC on the hardware side.

The Mobile App is not natively developed, but uses a technology called ReactJS. React follows current modern

approaches using web technologies on mobile phones making it easy to implement apps in HTML, JavaScript and CSS

plus the benefits of using a custom made interfaces and designs not following usual templates. Besides this, React

offers real advantages on data changing over time, as no active updates are necessary like in usual JS applications,

but React uses the “render” methods to automatically update the representation of the data.

The Front-End connects to a Mobile-App-Gateway ensuring the communication between other backends and the

mobile App. The Mobile-Game-Backend ensures constant updates of running challenges and delivery of the deltas to

the Front-End where these find their representation once the User opens the app. This ensures battery and

performance advantages compared to have this functionality within the Mobile App directly. Additionally this comes

with performance advantages due to the app connecting only to one Backend, and not multiple such as SiteWhere

and the Rues Engine (Game Backend).

DASHBOARD

The dashboard will always be the first touchpoint for the user when opening the app. The dashboard contains most

of the useful information to quickly get an overview on the last updates, current leader board position and the team’s

performance.

From here the user can jump to various functionalities such as:

• Accept his / her first challenge

• Check the leader board and the current own status

• Check his / her currently active challenges and stats

• Check the Won / Lost challenges

• View details and accept new challenges

• Get a glimpse of the emotionalized item used to motivate the user using the app

FIGURE 26: THE CHARGED MOBILE APP VIEW OF

ACTIVE CHALLENGES AND WHO WON CHALLENGES

ON THE DASHBOARD

FIGURE 27: THE CHARGED MOBILE APP LEADER

BOARD VIEW WITH OPEN DETAILS OF A SPECIFIC USER

D3.3 System Components

Page 40 of 47

Depending on the user role, the App will have different functionalities. Depending on the type of the account

different functionalities will be offered to the users. A regular user will be able to only play the game but a local

admin will also be able to add/remove devices, NFCs from the system etc. The role can be configured at the user

account in the Backend and delivered within the user object.

DISPLAY A CHALLENGE / ACCEPT A CHALLENGE / COMPLETE A CHALLENGE

The challenges view supports daily, weekly and monthly challenges which can be played in parallel. Filter will

easily make these browsable.

FIGURE 28: THE CHARGED MOBILE APP REVIEW OF CHALLENGES

Morning, Evening and lunch challenges’ views:

FIGURE 29: AN OVERVIEW OF THE CHARGED MOBILE APP MORNING, LUNCH AND EVENING CHALLENGES

Challenge details can be viewed to see the conditions to be met to win the challenge.

D3.3 System Components

Page 41 of 47

FIGURE 30: THE CHARGED MOBILE APP CHALLENGE SCREENS

From the details, challenges can be accepted and are then displayed in the active challenge overview. Accepting

a challenge triggers events in the Mobile-App-Gateway to monitor the user’s specific energy disaggregation until

a challenge is won or lost. The amount of challenges will be limited to 5 in the first version of the app.

USER REGISTRATION

Enhancing the current version of the mobile app, users will be able to register using the App by entering their

Username, password, name and, if necessary, other information into the registration form to create their own

user account.

NFC INTEGRATION

NFC will be used for appliance usage tracking by players but also for administrative purposes:

• Player usage: In order to track specific usage of appliances which cannot be solely assigned to
specific players (such as desk lamps odder the personal computer of the player), NFC will be used
to check in at an appliance before usage. By doing this, the energy disaggregation can be easily
assigned to a specific user

• Admin Use: In order to add new appliances to the SiteWhere system and make these usable within
the ChArGED system, the app can be used to scan and add these.

Building up on functionality of the initial prototypes, NFC support will be added for more brands as we progress,

in case there are bugs/issues with some of them, to make scanning smoother on a wider area of phones, i.e.

Samsung, and make the gaming experience smoother.

D3.3 System Components

Page 42 of 47

FIGURE 31: NFC INTEGRATION WITHIN THE MOBILE APP

BLE INTEGRATION

Bluetooth Low Energy (Bluetooth LE, BLE) is a wireless personal area network technology which allows to use

various applications within this standard to be used in Mobile Apps. Within the projct we use “Proximity sensing”

for location tracking of the users within the project sites in rooms and floors.

Specifically this means we make use of PXP — the proximity profile — which allows a proximity monitor to detect

whether a proximity reporter is within a close range. Physical proximity can be estimated using the radio

receiver's RSSI value, although this does not have absolute calibration of distances.

BLE is integrated in order to track presence of users within a specific part of a building in order to share energy

consumption from appliances which are shared between different users (ceiling lights, a beamer during a

presentation, etc.).

BLE integration is currently supported and will constantly enhanced during trials once we better understand the

location specifics like rooms, other beacon interferences, wall thickness etc., to better track the users current

position within a room or floor, in order to better understand how to incorporate that data into running

challenges.

FIGURE 32: BLE INTEGRATION WITHIN THE MOBILE APP

REQUEST - RESPONSE FLOW AND GAME BACKEND INTEGRATION

In order to implement the gamification approach, the mobile app must communicate with different systems.

For encapsulating the communication, the Communication Backend is the sole communication partner for the

mobile app. The communication backend will in turn communicate with the rest of the charged backend

infrastructure. Within this range, other systems may be requested. This can be done synchronously or

asynchronously.

D3.3 System Components

Page 43 of 47

Error! Reference source not found. describes the general communication procedure. In this case, the handling

of a NFC swipe is visualized.

1. The mobile device detects an NFC swipe

2. It sends an alert to the Communication Backend

3. The alert is then send to SiteWhere where it is stored and forwared to the Energy Analytics

and Game backends .

4. The alert is processed by the backends. Past data are retrieved as needed during this process

from SiteWhere.

5. The energy savings of the user as well as the total game progress (scores,challenge updates)

are generated and forwarded back to SiteWhere where they are stored.

6. A message is send to the mqtt broker to inform the mobile app that there is an new update in

the server.

7. The mobile app gets the new data from SiteWhere and updates the user interface.

6.2 GAME BACKEND / GAME MECHANICS

6.2.1 DESCRIPTION AND OPERATION
The Game Backend implements the game rules logic that is going to be used in order to decide the progress

of a user in the game, updates the user scores and leader board, and keeps track of the currently

accepted/available challenges of a user.

The Game Backend is implemented in Java and interfaces with SiteWhere via MQTT and REST. All the

communication between the software components happens through SiteWhere. Whenever an event is sent

to SiteWhere from a device (i.e. a measurement or an alert), the event is stored and forwarded to a

predefined MQTT topic which is listened by the other software. The Game Backend listens to events sent to

SiteWhere that describe the users’ behavior and its results (such as NFC swipes, user location updates and

energy updates), processes the data and determines the user progress with respect to the challenges that

have been accepted or schedules delayed or recurrent processing. The processing performed by the game

backend is not necessarily tied with the specific time an alert has arrived. Separate logic can also be

triggered or executed at a different time to check/update the game progress and provide updates to the

other system components.

When a challenge is completed the scores and the game progress for each user are updated and the updates

are sent to SiteWhere and to the mobile app. The mobile app frontend is notified when updates become

available via MQTT which in turn retrieves the data and displays them to the user. Initially the possibility

of using WSO2 Complex Event processor (CEP) has been investigated but it was replaced with a low level

game engine implemented in Java. This was done for the following reasons

1. WSO2 CEP does not officially support HTTP requests from within a rule to Sitewhere’s API nor

officially supports communication with InfluxDB

This provides us with the problem that we cannot query SiteWhere and get information about the system

because all the information about our system i.e. devices, locations, NFC associations, user scores are stored

in SiteWhere. Those information are important as they are used as input in the different rules that are

implemented in the Game Backend.

2. WSO2 CEP cannot implement functionality not tied to a specific alert

D3.3 System Components

Page 44 of 47

In the game backend we need to periodically check the process of all users regarding the challenges they

have accepted and determine if a challenge should terminated or the progress updated. For example at the

end of each week we will need to check the progress that is made for each user and determine if the

challenge has been completed. The WSO2 CEP is primarily event driven so this functionality cannot be

implemented as easily. Java provides more straightforward implementation options that reduce complexity

and improve the efficiency of the whole system.

3. Development and Debugging tools

Java is a widely used programming language that provides advanced tools for debugging and testing.

Similar functionality is not provided from WSO2 CEP or is not as advanced something that increases

development time and decreases software quality the more complex the software gets.

6.2.2 IMPLEMENTATION

6.2.2.1 ARCHITECTURE

The game backend gets notifications for the events that are arriving in SiteWhere (measurements from

sensors and alerts from the mobile app and energy analytics backend) via MQTT. It also uses SiteWhere’s

Rest API to request specific information or make updates. The way it communicates with the different

software components is described in Figure 33.

FIGURE 33: THE GAME BACKEND INTERFACES

Internally the Game Backend consists of three different subcomponents. The first one is responsible for

interfacing the backend with the rest of the system through MQTT and REST. This interface is used to

receive/request and update data according to the results of the rules. The second sub component is the core

engine that implements the game logic. It consists of a preprocessing component which handles the receiving

and identification of the incoming messages, a rule selection component which deduces which rule should be

used depending on the input and the rules which describe a unique challenge in our system or a unique action

that should be performed (for example at the end of the week check which challenges have not been completed

and release them if they have been assigned to a user). The third subcomponent is the scheduler. Its main use

it to schedule delayed rules that should be executed in the future once or executed at specific time intervals (i.e.

every day, every week etc).

D3.3 System Components

Page 45 of 47

FIGURE 34: THE GAME BACKEND INTERNAL ARCHITECTURE

New rules can be added as needed to incorporate new challenges. Each rule is contained in one java file and can

be added separately from the rest. The architecture has been designed with the scalability and modularity

aspects in mind, i.e. we want to be able to add new rules independently from the rest of the system as needed

in case the game changes or is enhanced. For this reason the rules are organized in a specific structure by

inheriting from an abstract class Rule which defines a common interface as well as implements common

functionality.

2. The Alert is forwarded to the game backend and the event is matched to the device - NFC pair that it

corresponds to inside SiteWhere.

Inside SiteWhere we have a Device assigned to an NFC where all the measurement of this device are sent

and an NFC assigned to a device that inside its metadata it contains the device_id of the device that it

corresponds to. The nfc_id provided by the app is used to get the device_id from the metadata of the NFC. If

we are close to the end of the working hours and the challenge has not been yet completed today a new

alert named user_action_update is generated that is listened by the energy analytics backend. The swipe is

also matched to the specific challenge and a unique challenge identifier is added in the alert which is

labelled user_left_for_the_day.

3. The energy analytics backend retrieves the measurements, processes the data and produces a new

power_updatealert that is sent back to SiteWhere, which contains useful information about how the user’s

action affected the power consumption. This alert is gathered by the game backend.

4. Using the information contained in the alert the game backend then matches the alert to the specific

challenge. The power update (sent by the energy analytics) is checked against a threshold to determine if

D3.3 System Components

Page 46 of 47

the user closed the pc. We are looking for a drop in the consumption and a change greater than a threshold

(e.g. 15W).. If the previous requirements are met the challenge is considered completed and points are

assigned to the user’s score in his/hers smartphone device in SiteWhere. The device’s metadata are also

updated with other useful information such as information on the last completed challenge, points awarded

for the last completed challenge, points gained the previous week and more.

5. The Game Backend finally sends an alert to SiteWhere that the challenge has been completed and a

notification on a separate MQTT topic listened by the mobile app in order to communicate that there is an

update available for the specific user. Then the mobile app parses these data from SiteWhere and displays

them in the front end.

D3.3 System Components

Page 47 of 47

8 CONCLUSIONS
This report describes the final version of the ChArGED platform architecture and its software implementation. It

is the result of a cooperation work between all project partners, driven by requirements gathered at the three

pilot sites.

The initial system architecture has been enriched after a number of challenges appeared during the

implementation and evaluation phase, mostly to do with communication between components and location of

functionality within the software system.

All functional blocks are described with information on both functionality and implementation, for exploitation

by the project‘s stakeholders.

	Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Intended Audience
	1.4 Document Overview

	2 ChArGED System Architecture
	2.1 Logical Architecture
	2.2 Process View

	3 Data/Core Back-End System
	3.1 SiteWhere Software Environment
	3.1.1 Description and Operation
	3.1.2 Implementation
	3.1.2.1 Architecture
	3.1.2.3 Installation and Configuration Steps

	3.2 Databases (InfluxDB, MongoDB)
	3.2.1 Description and Operation
	3.2.2 Implementation
	3.2.2.1 Architecture

	3.3 User Management (WSO2 Identity Server)
	3.3.1 Description and Operation
	3.3.2 Implementation
	3.3.2.1 Architecture
	3.3.2.3 Installation and Configuration Steps

	3.4 Asset management/User Interface
	3.4.1 Description and Operation
	3.4.2 Implementation
	3.4.2.1 Architecture
	3.4.2.2 Implementation Status

	3.5 Raw Data Visualization (Grafana)
	3.5.1 Description and Operation
	3.5.2 Implementation

	4 Sensor Gateway
	4.1 Sensor Gateway System Architecture
	4.2 HDM/SiteWhere Integration
	4.2.1 Description and Operation
	4.2.2 Implementation
	4.2.2.1 Architecture

	4.3 Modbus Device Integration to SiteWhere
	4.3.1 Description and Operation
	4.3.2 Implementation
	4.3.2.1 Architecture

	5 Analytics Backend
	5.1 Wattics Back-End Architecture
	5.2 Component for Automated Disaggregation and Allocation of Energy Savings
	5.2.1 Description and Operation

	5.3 Component for Automated Discovery of Energy Saving Opportunities
	5.3.1 Description and Operation
	5.3.2 Implementation
	5.3.2.1 Architecture

	5.4 Energy manager Front-End Dashboard
	5.4.1 Description and Operation

	5.5 Component for Microgeneration Energy Forecasting
	5.5.1 Description and Operation
	5.5.2 Implementation

	6 Mobile App
	1.1 Front-End
	6.1.1 Description and Operation

	6.2 Game Backend / Game Mechanics
	6.2.1 Description and Operation
	6.2.2 Implementation
	6.2.2.1 Architecture

	8 Conclusions

